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Multilinear maps

Multilinear maps:

e : G1 ×G2 ×·· ·×Gn −→GT

e(a1P1,a2P2, . . . ,anPn) = e(P1,P2, . . . ,Pn)a1a2···an

The case n = 2: pairings.

Secure multilinear maps with n > 2 are

a near-mythical cryptographic silver bullet.

March 2018: Ming-Deh Huang (arXiv:1803.10325)

gives a concrete proposal for secure trilinear maps.
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Huang’s proposal

Basic ingredients: an abelian variety A/Fq equipped with

many explicit endomorphisms, and a pairing ηr on A[r].

e : G1 ×G2 ×G3 −→GT

where G1 = 〈P〉 ⊂ A[r], G2 = 〈Q〉 ⊂ A[r], and

G3 =Z+UP,Q ⊂ End(A)

where ηr(P,Q) ̸= 1 and UP,Q is a set of “noise”:

UP,Q ⊆ {ξ ∈ End(A) : ηr(P,ξ(Q)) = 1.

The trilinear map:

e : (aP,bQ,ψ= c+ξ) 7−→ ηr(aP,ψ(bQ)) = ηr(P,Q)abc .
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Attacking the third group

The trilinear map:

e : (aP,bQ,ψ= [c]+ξ) 7−→ ηr(aP,ψ(bQ)) = ηr(P,Q)abc .

We can assume ηr , G1 = 〈P〉, G2 = 〈Q〉, and GT =µr are secure.

We need to attack the new group, G3.

Public keys in G3 are ψ= [c]+x1ξ1 +·· ·+xsξs, where

• c is the secret key, an exponent in Z/rZ

• x1, . . . ,xs are randomly sampled from Z/rZ (noise)

• 1,ξ1, . . . ,ξs is a (public) basis for a subring of End(A)

Attack: recover c, or even the whole vector (c,x1, . . . ,xs).
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Identifying endomorphisms

We have a pairing End(A)×End(A) →Z defined by

〈ψ1,ψ2〉 := Tr(ψ1 ◦ψ2
†) ,

where ψ↔ψ† is the Rosati involution.

Attack: Given the public basis (ξ0 = 1,ξ1, . . . ,ξs)

and a public key ψ= c+x1ξ1 +·· ·+xsξs,

1. (Pre)compute M = (mij) = (〈ξi,ξj〉) for 0 ≤ i, j ≤ s;

2. Compute v = (vi) = (〈ψ,ξi〉) for 0 ≤ i ≤ s;

3. Solve for (c,x1, . . . ,xs) = vM−1 (over Z/rZ).
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Toy example

Let E be a supersingular elliptic curve, with End(E ) ⊇Z〈i, j,k〉
where i2 =−a, j2 =−b, k2 = ab. Suppose (ξ1,ξ2,ξ3) = (i, j,k).

Endomorphism pairing:

〈α,β〉 = Tr(αβ†) =αβ† +βα†

where (t +xi+yj+zk)† = t − (xi+yj+zk).

Given ψ= [c]+x1i+x2j+x3k, we have

〈ψ,1〉 = (c+x1i+x2j+x3k)+ (c−x1i−x2j−x3k) = 2 · c

〈ψ, i〉 = (c+x1i+x2j+x3k)(−i)+ i(c−x1i−x2j−x3k) = 2a ·x1

〈ψ, j〉 = (c+x1i+x2j+x3k)(−j)+ j(c−x1i−x2j−x3k) = 2b ·x2

〈ψ,k〉 = (c+x1i+x2j+x3k)(−k)+k(c−x1i−x2j−x3k) =−2ab ·x3
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Computing the endomorphism pairing

How do you compute the endomorphism pairing 〈·, ·〉?
Classical solution (see e.g. Mumford): intersection theory.

• If endomorphisms are presented using divisors/bundles

on A, then use intersection theory on those divisors.

• If endomorphisms are presented as rational maps, then

use intersection theory on the graphs.

• If A = JC and endomorphisms are correspondences on

C ×C, then use intersection theory on correspondences

(see e.g. S’s thesis).

• In some situations, one could compute the matrices of

ψ1 ◦ψ2
† on low-degree torsion subgroups A[ℓ], and CRT

the traces of these matrices.
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The moral of the story

If you can compute efficiently with elements of G3,

then you can compute the pairing 〈·, ·〉 on G3.

So: if you can efficiently compute the trilinear map,

then you can efficiently break its G3.
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