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Multilinear maps

Multilinear maps:
e.GxGyx - xG,— Gr

e(alp]_) aZPZ, ceey anPn) = e(P]_) P2) L. ,Pn)alaz-..an
The case n = 2: pairings.

Secure multilinear maps with n > 2 are

a near-mythical cryptographic silver bullet.

March 2018: Ming-Deh Huang (arXiv:1803.10325)
gives a concrete proposal for secure trilinear maps.



Huang’s proposal

Basic ingredients: an abelian variety A/[F; equipped with
many explicit endomorphisms, and a pairing 77 on A[r].

e:G; xGy x Gz — Gt
where G, = (P) c A[r], G, = (Q) < A[r], and
G3 = Z + Up,g < End(A)
where n,(P, Q) # 1 and Up ¢ is a set of “noise”:
Up,o < € € End(A) : 0, (P,E(Q) = 1.
The trilinear map:

e: (aP,bQ,y = c+ &) — n,(aP,w(bQ)) = n,(P, Q.



Attacking the third group

The trilinear map:
e: (aP,bQy = [c] +¢) — n,(aP,y(bQ) =n(P, Q.

We can assume 1, G; = (P), G2 = (Q), and G = y, are secure.
We need to attack the new group, Gs.
Public keys in G3 are ¢ = [c] + x1{1 + - - - + x5, where

* cis the secret key, an exponentin Z/rZ

* X1,...,Xs are randomly sampled from Z/rZ (noise)

e 1,¢4,...,¢sis a (public) basis for a subring of End(A)

Attack: recover c, or even the whole vector (¢, x1,..., X;).



Identifying endomorphisms

We have a pairing End(A) x End(A) — Z defined by

(W1, Wo) :=Tr(y owo'),

where v — v is the Rosati involution.

Attack: Given the public basis ({o =1,¢1,...,¢s)
and a publickey ¥ = c+ x1&1 + -+ + x5Cs,

1. (Pre)compute M = (my;) = ({{;,¢j)) for0< i, j< s
2. Compute v= (v;) = (y,¢p) for0<i<s;

3. Solve for (¢, x1,...,xs) = M~ (over Z/1Z).



Toy example

Let & be a supersingular elliptic curve, with End(&) 2 Z(i, j, k)
where # = —aq, j2 =—b, IZ = ab. Suppose (1,¢2,¢3) = (4, ], k).

Endomorphism pairing:
(@, ) =Tr(af") = ap + pa’
where (t+ xi+ yj+2zk)" = t — (xi + yj + zk).

Given ¥ = [c] + x1 i+ x2] + x3k, we have

W,y =(c+x1i+ X2]+ x3k) + (c— x11— X2 — X3 k) =2-c
(W, =(c+x1i+x2j+x3k) (=) +i(c—x11— X2] — X3 k) =2a-Xx;
W, ) =(c+x1i+ x2j+x3K) (—=)) + jlc— x11— X2 — X3 k) =2b-x

(W, ky =(c+x1i+x2]+ x3k) (k) + k(c— x1i—X2j — x3k) =—2ab-x3



Computing the endomorphism pairing

How do you compute the endomorphism pairing (-, -)?

Classical solution (see e.g. Mumford): intersection theory.

 If endomorphisms are presented using divisors/bundles
on A, then use intersection theory on those divisors.
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How do you compute the endomorphism pairing (-, -)?

Classical solution (see e.g. Mumford): intersection theory.

 If endomorphisms are presented using divisors/bundles
on A, then use intersection theory on those divisors.

* If endomorphisms are presented as rational maps, then
use intersection theory on the graphs.

e If A=Jc and endomorphisms are correspondences on
C x C, then use intersection theory on correspondences
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* In some situations, one could compute the matrices of
w10, on low-degree torsion subgroups A[/], and CRT
the traces of these matrices.



The moral of the story

If you can compute efficiently with elements of G3,
then you can compute the pairing (-, -) on Gs.

So: if you can efficiently compute the trilinear map,
then you can efficiently break its Gs.



