Trilinear and found wanting

Steven Galbraith + Benjamin Smith ANTS XIII, Madison, Wisconsin // July 19, 2018

University of Auckland, New Zealand Inria + Laboratoire d'Informatique de l'École polytechnique (LIX), France

Multilinear maps:

$$
e: \mathbb{G}_1 \times \mathbb{G}_2 \times \cdots \times \mathbb{G}_n \longrightarrow \mathbb{G}_T
$$

 $e(a_1P_1, a_2P_2, \ldots, a_nP_n) = e(P_1, P_2, \ldots, P_n)^{a_1a_2\cdots a_n}$

The case $n = 2$: **pairings**.

Secure multilinear maps with *n >* 2 are a near-mythical cryptographic silver bullet. *March 2018*: Ming-Deh Huang (arXiv:1803.10325) gives a concrete proposal for secure **trilinear** maps. **Basic ingredients:** an abelian variety A/\mathbb{F}_q equipped with many **explicit endomorphisms**, and a **pairing** η_r on $A[r]$.

 $e: \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_3 \longrightarrow \mathbb{G}_T$

where $\mathbb{G}_1 = \langle P \rangle \subset A[r], \mathbb{G}_2 = \langle Q \rangle \subset A[r],$ and

 $\mathbb{G}_3 = \mathbb{Z} + U_{P,Q} \subset \text{End}(A)$

where $\eta_r(P,Q) \neq 1$ and $U_{P,Q}$ is a set of "noise":

 $U_{P,Q} \subseteq {\xi \in \text{End}(A) : \eta_r(P, \xi(Q)) = 1.}$

The **trilinear map**:

$$
e: (aP, bQ, \psi = c + \xi) \longrightarrow \eta_r(aP, \psi(bQ)) = \eta_r(P, Q)^{abc}.
$$

The trilinear map:

$$
e: (aP, bQ, \psi = [c] + \xi) \longrightarrow \eta_r(aP, \psi(bQ)) = \eta_r(P, Q)^{abc}
$$

We can assume η_r , $\mathbb{G}_1 = \langle P \rangle$, $\mathbb{G}_2 = \langle Q \rangle$, and $\mathbb{G}_T = \mu_r$ are secure. We need to **attack the new group**, \mathbb{G}_3 .

Public keys in \mathbb{G}_3 are $\psi = [c] + x_1\xi_1 + \cdots + x_s\xi_s$, where

- *c* is the secret key, an exponent in $\mathbb{Z}/r\mathbb{Z}$
- x_1, \ldots, x_s are randomly sampled from $\mathbb{Z}/r\mathbb{Z}$ (noise)
- \bullet 1, ξ_1,\ldots,ξ_s is a (public) basis for a subring of End(*A*)

Attack: recover *c*, or even the whole vector (c, x_1, \ldots, x_s) .

.

We have a **pairing** $\text{End}(A) \times \text{End}(A) \rightarrow \mathbb{Z}$ defined by

 $\langle \psi_1, \psi_2 \rangle := \text{Tr}(\psi_1 \circ \psi_2^\dagger),$

where $\psi \leftrightarrow \psi^{\dagger}$ is the Rosati involution.

Attack: Given the public basis ($\xi_0 = 1, \xi_1, \ldots, \xi_s$) and a public key $\psi = c + x_1 \xi_1 + \cdots + x_s \xi_s$,

- 1. (Pre)compute $M = (m_{ij}) = (\langle \xi_i, \xi_j \rangle)$ for $0 \le i, j \le s$;
- 2. Compute $v = (v_i) = (\langle \psi, \xi_i \rangle)$ for $0 \le i \le s$;
- 3. Solve for $(c, x_1, ..., x_s) = vM^{-1}$ (over $\mathbb{Z}/r\mathbb{Z}$).

Toy example

Let *&* be a supersingular elliptic curve, with $\text{End}(\mathscr{E}) \supseteq \mathbb{Z}\langle i, j, k \rangle$ $\text{where } i^2 = -a, j^2 = -b, k^2 = ab. \text{ Suppose } (\xi_1, \xi_2, \xi_3) = (i, j, k).$

Endomorphism pairing:

$$
\langle \alpha, \beta \rangle = \text{Tr}(\alpha \beta^{\dagger}) = \alpha \beta^{\dagger} + \beta \alpha^{\dagger}
$$

where $(t + xi + yj + zk)^{\dagger} = t - (xi + yj + zk)$.

Given $\psi = [c] + x_1 i + x_2 j + x_3 k$, we have

$$
\langle \psi, 1 \rangle = (c + x_1 i + x_2 j + x_3 k) + (c - x_1 i - x_2 j - x_3 k) = 2 \cdot c
$$

$$
\langle \psi, i \rangle = (c + x_1 i + x_2 j + x_3 k)(-i) + i(c - x_1 i - x_2 j - x_3 k) = 2a \cdot x_1
$$

$$
\langle \psi, j \rangle = (c + x_1 i + x_2 j + x_3 k)(-j) + j(c - x_1 i - x_2 j - x_3 k) = 2b \cdot x_2
$$

 $\langle \psi, k \rangle = (c + x_1 i + x_2 j + x_3 k)(-k) + k(c - x_1 i - x_2 j - x_3 k) = -2ab \cdot x_3$

• If endomorphisms are presented using **divisors/bundles** on *A*, then use intersection theory on those divisors.

- If endomorphisms are presented using **divisors/bundles** on *A*, then use intersection theory on those divisors.
- If endomorphisms are presented as **rational maps**, then use intersection theory on the graphs.

- If endomorphisms are presented using **divisors/bundles** on *A*, then use intersection theory on those divisors.
- If endomorphisms are presented as **rational maps**, then use intersection theory on the graphs.
- If *A = J^C* and endomorphisms are **correspondences** on *C ×C*, then use intersection theory on correspondences (see e.g. S's thesis).

- If endomorphisms are presented using **divisors/bundles** on *A*, then use intersection theory on those divisors.
- If endomorphisms are presented as **rational maps**, then use intersection theory on the graphs.
- If *A = J^C* and endomorphisms are **correspondences** on *C ×C*, then use intersection theory on correspondences (see e.g. S's thesis).
- In some situations, one could compute the matrices of *ψ*¹ *◦ψ*² † on **low-degree torsion** subgroups *A*[*ℓ*], and **CRT** the traces of these matrices.

If you can compute efficiently with elements of \mathbb{G}_3 , then you can compute the pairing $\langle \cdot, \cdot \rangle$ on \mathbb{G}_3 .

So: if you can efficiently compute the trilinear map, then you can efficiently break its \mathbb{G}_3 .