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e Relative to the sparse input size...
e Detecting roots in Z/(p) is NP-hard... [Bi, Cheng, Rojas,
2014]. (Complements [Kipnis, Shamir, 1999] result over
]FQk...
e Counting roots in (Z/(p))? is #P-hard... [von zur Gathen,
Karpinski, Shparlinski, 1996]

e For any fixed k, detecting roots in Z/(p*) is
NP-hard...

e Detecting roots in QQ, for an input
(f,p)€Z[x1] x {2,3,5,...} is NP-hard with
respect to ZPP reductions [Avendano,
Ibrahim, Rojas, Rusek, 2011].
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count
To £t the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate 9
root: (o = 0 x(x - 1)

Non-degenerate
root: (1=1

Non-degenerate
root: (o =1

2(x — 1)(z — 2)

Non-degenerate
root: (o = 2

Final Count= 1+ 3*(1 4 3'(1+1))=190.
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Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £>10, e.g., for
degree 100, our algorithm takes milliseconds, vs. half a
second for brute-force (in Maple on a Dell Desktop with an
Intel Core i7-4770 and 4Gb RAM).




Preliminary Timings

@ Thank you for your attention!

See www.math.tamu.edu/ rojas for preprints and further
info...
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We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let

(€{0,...,p— 1} be any root of the f mod p.

: (k=1) ~

e Let SO(CO)::mm{ordp(f(co)),ordp(f'(Co)p), ....,o1rdp<f(kj_l()fO)p’C 1)}
o Let fi(x):= mﬂ@ + pz). You now need only count

the roots of fy in Z /(pF=*0())1
e Hensel’s Lemma implies the so((p) =1 case is easy. The

case s0((o) =k implies (y has exactly p*~! lifts.

e We may thus assume so(¢)€{2,...,k —1}.
e Proceed recursively!




