Faster Root Counting Over Z / (pk)

J. Maurice Rojas I
July 19, 2018

This is joint work with...

Leann Kopp "~ Natalie Randall Yuyu Zhu

This is joint work with...

s

Leann Kopp Natalie Randall Yuyu Zhu
...and is heavily based on the joint work with Qi

Cheng, Shuhong Gao, and Daqging Wan just
presented here!

Main Result

...simpler, faster randomized version of our root
counting algorithm from earlier today!

Main Result

...simpler, faster randomized version of our root
counting algorithm from earlier today!: For
counting roots in Z/(p"*) of a polynomial, we get
a speed-up exponential in k.

Background: k = co = p-adic rationals

e Relative to the sparse input size...

Background: k = co = p-adic rationals

e Relative to the sparse input size...
e Detecting roots in Z/(p) is NP-hard... [Bi, Cheng, Rojas,
2014]. (Complements [Kipnis, Shamir, 1999] result over
]FQk...

Background: k = co = p-adic rationals

e Relative to the sparse input size...
e Detecting roots in Z/(p) is NP-hard... [Bi, Cheng, Rojas,
2014]. (Complements [Kipnis, Shamir, 1999] result over
]FQk...
e Counting roots in (Z/(p))? is #P-hard... [von zur Gathen,
Karpinski, Shparlinski, 1996]

Background: k = co = p-adic rationals

e Relative to the sparse input size...
e Detecting roots in Z/(p) is NP-hard... [Bi, Cheng, Rojas,
2014]. (Complements [Kipnis, Shamir, 1999] result over
]FQk...
e Counting roots in (Z/(p))? is #P-hard... [von zur Gathen,
Karpinski, Shparlinski, 1996]

e For any fixed k, detecting roots in Z/(p*) is
NP-hard...

Background: k = co = p-adic rationals

e Relative to the sparse input size...
e Detecting roots in Z/(p) is NP-hard... [Bi, Cheng, Rojas,
2014]. (Complements [Kipnis, Shamir, 1999] result over
]FQk...
e Counting roots in (Z/(p))? is #P-hard... [von zur Gathen,
Karpinski, Shparlinski, 1996]

e For any fixed k, detecting roots in Z/(p*) is
NP-hard...

e Detecting roots in QQ, for an input
(f,p)€Z[x1] x {2,3,5,...} is NP-hard with
respect to ZPP reductions [Avendano,
Ibrahim, Rojas, Rusek, 2011].

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co + pCy + -+ + p 11 €Z/(p*) by first
finding possible (o €{0,...,p — 1},

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

Optimized Recursion Tree

Example of Recursion

To count the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Optimized Recursion Tree

Example of Recursion

count

To find the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Optimized Recursion Tree

Example of Recursion

count

To &nd thé roots of f(z) := x'® — 10z + 738 in Z /(37) ...

z(r—1)°

Optimized Recursion Tree

Example of Recursion

count

To #rd the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate x(x o 1)9

root: (o = 0

Optimized Recursion Tree

Example of Recursion

count
To &rd the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate x(x o 1)9

root: (o = 0

C():l - S()(l):4

Optimized Recursion Tree

Example of Recursion

count

To &xet the roots of f(z) := 2'® — 10z + 738 in Z /(37) ...

Non-degenerate x(x o 1)9

root: (o = 0

C():l - S()(l):4

Optimized Recursion Tree

Example of Recursion

count

To &ad the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate x(x o 1)9

root: (o = 0

C():l - S()(l):4

2?(r —1)

Optimized Recursion Tree

Example of Recursion

count
To &t the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate x(x o 1)9

root: (o = 0

- S()(l) =4

Non-degenerate 2
root: 1 =1 X (QJ - 1)

Optimized Recursion Tree

Example of Recursion

count
To faedt the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate
root: (o = 0

Non-degenerate

root: (1=1

Optimized Recursion Tree

Example of Recursion

count
To &ad the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate
root: (o = 0

Non-degenerate

root: (1=1

Optimized Recursion Tree

Example of Recursion

count

To Gad the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate
root: (o = 0

Non-degenerate

root: (1=1

Optimized Recursion Tree

Example of Recursion

count
To Gad the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate 9
root: (o = 0 x(x - 1)

Non-degenerate
root: (1=1

Non-degenerate
root: (o =1

Non-degenerate
root: (o = 2

Optimized Recursion Tree

Example of Recursion

count
To £t the roots of f(z) := x'® — 10z + 738 in Z /(37) ...

Non-degenerate 9
root: (o = 0 x(x - 1)

Non-degenerate
root: (1=1

Non-degenerate
root: (o =1

2(x — 1)(z — 2)

Non-degenerate
root: (o = 2

Final Count= 1+ 3*(1 4 3'(1+1))=190.

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes,

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,,

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £ > 10,

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £>10, e.g., for
degree 100, our algorithm takes milliseconds, vs. half a
second for brute-force

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £>10, e.g., for
degree 100, our algorithm takes milliseconds, vs. half a
second for brute-force (in Maple

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £>10, e.g., for
degree 100, our algorithm takes milliseconds, vs. half a
second for brute-force (in Maple on a Dell Desktop

Preliminary Timings

Las Vegas Complexity Bound

Maximizing number of nodes, and noting that each node
computation is dominated by factorization over F,, we
obtain complexity no worse than:

d1.5+o(1) (10g p)2+o(1) 1.19%

...and for p=2, we get major speed-ups for £>10, e.g., for
degree 100, our algorithm takes milliseconds, vs. half a
second for brute-force (in Maple on a Dell Desktop with an
Intel Core i7-4770 and 4Gb RAM).

Preliminary Timings

@ Thank you for your attention!

See www.math.tamu.edu/ rojas for preprints and further
info...

Optimized Recursio ee

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p,

Optimized Recursio ee

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first

finding possible (o €{0,...,p — 1}, then counting the

remaining base-p digits via an algebraically defined

recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

Optimized Recu

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first

finding possible (o €{0,...,p — 1}, then counting the

remaining base-p digits via an algebraically defined

recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

o Let $9((p):=min {Ordp(f(co))7

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first

finding possible (o €{0,...,p — 1}, then counting the

remaining base-p digits via an algebraically defined

recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

o Let $9((p):=min {ordp(f(CO))7 ord,(f'(¢o)p),

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first

finding possible (o €{0,...,p — 1}, then counting the

remaining base-p digits via an algebraically defined

recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

o Let s(Co):=min {ordp(£(G)), ordy (' (C)p), -

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first

finding possible (o €{0,...,p — 1}, then counting the

remaining base-p digits via an algebraically defined

recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

o Let $9((p):=min {ordp(f(co)% ord, (f'(Go)p), - . 7ordp<f(évl:)l()c!o)pkf1>} ‘

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

o Let $9((p):=min {ordp(f(co)% ord, (f'(Go)p), - . 7ordp<f(évl:)l()c!o)pkf1>} ‘
o Let fi(z):= mﬂ@ + px).

Optimized Recursion Tree

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.
: (k=1) ~
e Let so((p):=min {ordp(f(co)),ordp(f'(CO)p),,ordp<f (k_l()c!o)pk 1)})
o Let fi(x):= mﬂ@ + pz). You now need only count
the roots of fy in Z /(pF=*0())1

Optimized Recu

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.
: (k=1) _
e Let so((p):=min {ordp(f(co)),ordp(f'(CO)p),,ordp<f (k_l()c!o)pk 1)})
o Let fi(x):= mﬂ@ + pz). You now need only count

the roots of fy in Z /(pF=*0())1
e Hensel’s Lemma implies the so((p) =1 case is easy.

Optimized Recu

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

. (k=1) _
e Let so((p):=min {ordp(f(co)),ordp(f'(CO)p),,ordp<f (k_l()c!o)pk 1)})
o Let fi(x):= mﬂ@ + pz). You now need only count
the roots of fy in Z /(pF=*0())1

e Hensel’s Lemma implies the so((p) =1 case is easy. The
case s0((o) =k implies (y has exactly p*~! lifts.

Optimized Recu

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let
(€{0,...,p— 1} be any root of the f mod p.

. (k-1) _
e Let SO(CO)::mm{ordp(f(co)),ordp(f'(Co)p),,o1rdp<f(kj_l()fO)p’C 1)}
o Let fi(x):= mﬂ@ + pz). You now need only count
the roots of fy in Z /(pF=*0())1
e Hensel’s Lemma implies the so((p) =1 case is easy. The

case s0((o) =k implies (y has exactly p*~! lifts.
e We may thus assume so(¢)€{2,...,k —1}.

Optimized Recu

Key Reduction for Recursion

We'll count (=Co+ pCy + -+ + pF 11 €Z/(pF) by first
finding possible (o €{0,...,p — 1}, then counting the
remaining base-p digits via an algebraically defined
recursion...

o If f€Z[x] is not identically 0 mod p, let

(€{0,...,p— 1} be any root of the f mod p.

: (k=1) ~

e Let SO(CO)::mm{ordp(f(co)),ordp(f'(Co)p),,o1rdp<f(kj_l()fO)p’C 1)}
o Let fi(x):= mﬂ@ + pz). You now need only count

the roots of fy in Z /(pF=*0())1
e Hensel’s Lemma implies the so((p) =1 case is easy. The

case s0((o) =k implies (y has exactly p*~! lifts.

e We may thus assume so(¢)€{2,...,k —1}.
e Proceed recursively!

