Faster Root Counting Over $\mathbb{Z}/(p^k)$

This is joint work with...

Leann Kopp Natalie Randall Y

This is joint work with...

Leann Kopp Natalie Randall Yuyu Zhu ...and is heavily based on the joint work with Qi Cheng, Shuhong Gao, and Daqing Wan just presented here!

Main Result

...simpler, faster randomized version of our root counting algorithm from earlier today!

Main Result

...simpler, faster randomized version of our root counting algorithm from earlier today!: For counting roots in $\mathbb{Z}/(p^k)$ of a polynomial, we get a speed-up exponential in k.

• Relative to the *sparse* input size...

- Relative to the *sparse* input size...
 - Detecting roots in $\mathbb{Z}/(p)$ is **NP**-hard... [Bi, Cheng, Rojas, 2014]. (Complements [Kipnis, Shamir, 1999] result over \mathbb{F}_{2^k} ...

- Relative to the *sparse* input size...
 - Detecting roots in $\mathbb{Z}/(p)$ is **NP**-hard... [Bi, Cheng, Rojas, 2014]. (Complements [Kipnis, Shamir, 1999] result over \mathbb{F}_{2^k} ...
 - Counting roots in $(\mathbb{Z}/(p))^2$ is #P-hard... [von zur Gathen, Karpinski, Shparlinski, 1996]

- Relative to the *sparse* input size...
 - Detecting roots in $\mathbb{Z}/(p)$ is **NP**-hard... [Bi, Cheng, Rojas, 2014]. (Complements [Kipnis, Shamir, 1999] result over \mathbb{F}_{2^k} ...
 - Counting roots in $(\mathbb{Z}/(p))^2$ is $\#\mathbf{P}$ -hard... [von zur Gathen, Karpinski, Shparlinski, 1996]
- For any fixed k, detecting roots in $\mathbb{Z}/(p^k)$ is \mathbb{NP} -hard...

- Relative to the *sparse* input size...
 - Detecting roots in $\mathbb{Z}/(p)$ is **NP**-hard... [Bi, Cheng, Rojas, 2014]. (Complements [Kipnis, Shamir, 1999] result over \mathbb{F}_{2^k} ...
 - Counting roots in $(\mathbb{Z}/(p))^2$ is #**P**-hard... [von zur Gathen, Karpinski, Shparlinski, 1996]
- For any fixed k, detecting roots in $\mathbb{Z}/(p^k)$ is **NP**-hard...
- Detecting roots in \mathbb{Q}_p for an input $(f, p) \in \mathbb{Z}[x_1] \times \{2, 3, 5, \ldots\}$ is **NP**-hard with respect to **ZPP** reductions [Avendaño, Ibrahim, Rojas, Rusek, 2011].

We'll count
$$\zeta = \zeta_0 + p\zeta_1 + \dots + p^{k-1}\zeta_{k-1} \in \mathbb{Z}/(p^k)$$
 by first finding possible $\zeta_0 \in \{0, \dots, p-1\}$,

$$f_0$$
 $x(x-1)^9$ $(=f(x) \mod 3)$

Non-degenerate root:
$$\zeta_0=0$$

$$f_0 \qquad x(x-1)^9 \qquad (=f(x) \bmod 3)$$

$$\times 3^{4-1} \zeta_0=1 \quad \Longrightarrow s_0(1)=4$$

$$f_{1,1} \qquad x^2(x-1) \qquad (=\frac{1}{3^4}f(1+3x) \bmod 3)$$

Non-degenerate root:
$$\zeta_0 = 0$$

$$f_0 \qquad x(x-1)^9 \qquad (=f(x) \bmod 3)$$

$$\times 3^{4-1} \qquad \varphi_0 = 1 \qquad \Rightarrow s_0(1) = 4$$

$$f_{1,1} \qquad x^2(x-1) \qquad (=\frac{1}{3^4}f(1+3x) \bmod 3)$$

$$\zeta_1 = 0 \qquad \Rightarrow s_1(0) = 2$$

Non-degenerate root:
$$\zeta_0 = 0$$

$$f_0 \qquad x(x-1)^9 \qquad (=f(x) \bmod 3)$$

$$\times 3^{4-1} \quad \zeta_0 = 1 \quad \Rightarrow s_0(1) = 4$$

$$f_{1,1} \quad x^2(x-1) \qquad (=\frac{1}{3^4}f(1+3x) \bmod 3)$$

$$\times 3^{2-1} \quad \zeta_1 = 0 \quad \Rightarrow s_1(0) = 2$$

Non-degenerate root:
$$\zeta_0 = 0$$
 f_0 $x(x-1)^9$ $(=f(x) \bmod 3)$ $x + 3^{4-1} \zeta_0 = 1 \implies s_0(1) = 4$ $f_{1,1}$ $x^2(x-1)$ $(=\frac{1}{3^4}f(1+3x) \bmod 3)$ $x + 3^{2-1} \zeta_1 = 0 \implies s_1(0) = 2$ $f_{2,0}$ $2(x-1)(x-2)$ $(=\frac{1}{3^{4+2}}f(1+0\cdot 3+3^2x) \bmod 3)$

Non-degenerate root:
$$\zeta_0 = 0$$
 f_0 $x(x-1)^9$ $(=f(x) \bmod 3)$ $\times 3^{4-1}$ $\zeta_0 = 1$ $\Rightarrow s_0(1) = 4$ $f_{1,1}$ $x^2(x-1)$ $(=\frac{1}{3^4}f(1+3x) \bmod 3)$ $\times 3^{2-1}$ $\zeta_1 = 0$ $\Rightarrow s_1(0) = 2$ Non-degenerate root: $\zeta_2 = 1$ $f_{2,0}$ $f_{2,0}$ $f_{2,0}$ $f_{3,0}$ $f_{3,0}$

Maximizing number of nodes,

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p ,

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k$$
.

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k.$$

...and for p=2, we get major speed-ups for $k \ge 10$,

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k.$$

...and for p=2, we get major speed-ups for $k \ge 10$, e.g., for degree 100, our algorithm takes milliseconds, vs. half a second for brute-force

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k.$$

...and for p=2, we get major speed-ups for $k \ge 10$, e.g., for degree 100, our algorithm takes milliseconds, vs. half a second for brute-force (in Maple

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k.$$

...and for p=2, we get major speed-ups for $k \ge 10$, e.g., for degree 100, our algorithm takes milliseconds, vs. half a second for brute-force (in Maple on a Dell Desktop

Maximizing number of nodes, and noting that each node computation is dominated by factorization over \mathbb{F}_p , we obtain complexity no worse than:

$$d^{1.5+o(1)}(\log p)^{2+o(1)}1.12^k.$$

...and for p=2, we get major speed-ups for $k \ge 10$, e.g., for degree 100, our algorithm takes milliseconds, vs. half a second for brute-force (in Maple on a Dell Desktop with an Intel Core i7-4770 and 4Gb RAM).

Thank you for your attention!

See www.math.tamu.edu/~rojas for preprints and further info...

We'll $count \zeta = \zeta_0 + p\zeta_1 + \cdots + p^{k-1}\zeta_{k-1} \in \mathbb{Z}/(p^k)$ by first finding possible $\zeta_0 \in \{0, \dots, p-1\}$, then counting the remaining base-p digits via an algebraically defined recursion...

• If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$,

We'll $count \zeta = \zeta_0 + p\zeta_1 + \cdots + p^{k-1}\zeta_{k-1} \in \mathbb{Z}/(p^k)$ by first finding possible $\zeta_0 \in \{0, \dots, p-1\}$, then counting the remaining base-p digits via an algebraically defined recursion...

• If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \right.$

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \right.$

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \right.$

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \dots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$.

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$. You now need only count the roots of f_1 in $\mathbb{Z} / (p^{k-s_0(\zeta_0)})!$

- If $f \in \mathbb{Z}[x]$ is not identically 0 mod p, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \dots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$. You now need only count the roots of f_1 in $\mathbb{Z} / (p^{k-s_0(\zeta_0)})!$
- Hensel's Lemma implies the $s_0(\zeta_0) = 1$ case is easy.

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$. You now need only count the roots of f_1 in $\mathbb{Z} / (p^{k-s_0(\zeta_0)})!$
- Hensel's Lemma implies the $s_0(\zeta_0) = 1$ case is easy. The case $s_0(\zeta_0) = k$ implies ζ_0 has exactly p^{k-1} lifts.

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$. You now need only count the roots of f_1 in $\mathbb{Z} / (p^{k-s_0(\zeta_0)})!$
- Hensel's Lemma implies the $s_0(\zeta_0) = 1$ case is easy. The case $s_0(\zeta_0) = k$ implies ζ_0 has exactly p^{k-1} lifts.
- We may thus assume $s_0(\zeta) \in \{2, \ldots, k-1\}$.

- If $f \in \mathbb{Z}[x]$ is not identically $0 \mod p$, let $\zeta_0 \in \{0, \dots, p-1\}$ be any root of the $f \mod p$.
- Let $s_0(\zeta_0) := \min \left\{ \operatorname{ord}_p(f(\zeta_0)), \operatorname{ord}_p(f'(\zeta_0)p), \ldots, \operatorname{ord}_p\left(\frac{f^{(k-1)}(\zeta_0)}{(k-1)!}p^{k-1}\right) \right\}.$
- Let $f_1(x) := \frac{1}{p^{s_0(\zeta_0)}} f(\zeta_0 + px)$. You now need only count the roots of f_1 in $\mathbb{Z} / (p^{k-s_0(\zeta_0)})!$
- Hensel's Lemma implies the $s_0(\zeta_0) = 1$ case is easy. The case $s_0(\zeta_0) = k$ implies ζ_0 has exactly p^{k-1} lifts.
- We may thus assume $s_0(\zeta) \in \{2, \ldots, k-1\}$.
- Proceed recursively!

