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If X has genus g, and X/G has genus h, and those branch
points have monodromy of order my, ..., m,, respectively, then

[h;my, ..., my]

is the signature of the action of G on X.



A finite group G acts on a compact Riemann surface X of
genus g > 2 with signature [h; my, ..., m,] if and only if:

l. the Riemann-Hurwitz formula is satisfied (with m; the
orders of elements in G):

g=1+|Gl(h 62(1—),

Il. there exists a generating vector (a1, by, ... ap, bp, C1,...,Cr)
of elements of G which satisfies the following properties:
Q@ G=(ai,bi,ap,b2,...,anbn,Cy,...,Cr).
® Theorderof ¢jis mjfor1 <j<r.
® TI7[a. b1 TI}_1 ¢ = ec, the identity in G.
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These are not always the same.

Example 1

[0; 3, 3, 9] satisfies Riemann-Hurwitz for a curve of genus 2 and
a group of order 9. But this signature cannot be an actual
signature for abelian groups. (There’s an issue with the Icm of
the m;. ) But all groups of order 9 are abelian.
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Sometimes they are badly not the same for a fixed group.

Example 2
Take g = p" for p an odd prime. Then [0;2,2,...,2]is a

r>4
potential signature for SL(2, g), but only one element of order 2.
r copies of this element of order 2 will never generate SL(2, q).
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The picture for non-abelian p-groups is not so clear yet.



